Résumé : The scope of this thesis is micromanipulation in liquid media. This scientific field aims at understanding the relevant phenomena existing during the manipulation in a liquid of microcomponents having a size between $1,micrometer$ and a few millimeters. This work focuses on the study of surface tension forces in immersed media, because they have favorable scaling effect. The main idea is to use gas bubbles as actuation mean in a liquid, and requires to study the mechanical properties of these bubbles. The originality of the approach is the combination of two effects: surface tension and gas compressibility.

The first step was the study of an efficient mean to generate a single bubble of predefined size. After a detailed review, it appeared that volume controlled bubble generation was a promising method. We have then developed a model to predict the size of a bubble, and emphasized the possible existence of a growing instability. An analytic dimensionless study allowed to define a criterion to predict the existence of this instability.

The second step aimed at the mechanical characterization in quasi static equilibrium of a gas bubble caught between two solids. The purpose is to predict the force generated by the bubble, together with its stiffness. The model implemented allowed to infer interesting properties, notably a high compliance whose value is controllable by fluidic parameters. This compliance property being very important during micromanipulation, a demonstrator making use of gas bubbles has been designed and manufactured. It consists in a compliant microtable actuated by three bubbles. This work opens the way to new actuation or sensing means, using the transduction between fluidic and mechanic energy operated by a capillary bridge.

/

Cette thèse a pour contexte la micromanipulation en milieu liquide. Cette thématique scientifique vise à comprendre les phénomènes qui interviennent lors de la manipulation dans un liquide de microcomposants, dont la taille peut varier entre $1,micrometer$ et quelques millimètres. Les travaux de cette thèse se sont focalisés sur l'étude des forces de tension de surface en milieu immergé, car elles bénéficient d'effets d'échelle favorables. L'idée poursuivie est d'utiliser des bulles de gaz comme un moyen d'actionnement dans les milieux liquides, et nécessite d'étudier les propriétés mécaniques de ces bulles. L'originalité de l'approche repose sur la combinaison de deux effets : la tension de surface et la compressibilité du gaz.

La première étape a été l'étude d'un moyen efficace pour générer une unique bulle de gaz de taille voulue. Après une analyse exhaustive, il est apparu que la génération de bulle par le contrôle en volume était une méthode prometteuse. Nous avons alors développé un modèle permettant de prédire la taille d'une bulle, et mis en évidence la possible existence d'une instabilité de la croissance de ces bulles. Une étude analytique adimensionnelle nous a permis de définir un critère pour prédire l'existence ou non de cette instabilité.

La seconde étape a porté sur la caractérisation mécanique en régime quasi statique d'une bulle de gaz en contact avec deux solides. Le but étant de prédire la force générée par une bulle de gaz sur les solides ainsi que sa raideur. Le modèle implémenté a permis de déduire des propriétés intéressantes des bulles de gaz, notamment une grande compliance dont la valeur peut être contrôlée par des paramètres fluidiques. Cette propriété de compliance étant très recherchée en micromanipulation, un démonstrateur exploitant les bulles de gaz a été conçu. Il s'agit d'une microtable compliante actionnée par trois bulles. Ces travaux ouvrent la voie vers de nouveaux modes d'actionnement ou de capteur utilisant la transduction entre une énergie fluidique et mécanique opérée par un ménisque capillaire.