par Wynant, Inneke
Président du jury Pays, Etienne
Promoteur Droogmans, Louis
Publication Non publié, 2010-07-05
Président du jury Pays, Etienne
Promoteur Droogmans, Louis
Publication Non publié, 2010-07-05
Thèse de doctorat
Résumé : | La bio-transformation naturelle des médicaments peut produire des métabolites toxiques; l’identification de ces métabolites est essentielle dans la stratégie de choix de molécules thérapeutiques. En appliquant les technologies de fermentation en bioréacteur des cellules hétérologues (souches d’E. coli recombinantes exprimant une iso-enzyme de cytochrome P450 humain avec la réductase humain), la bioconversion du substrat (principe actif) en ses métabolites de dégradation, a été réalisée à grande échelle (g-g). Notre choix s’est porté sur le complexe hCYP3A4/HR fonctionnel produit par un hôte E. coli. Les cellules intactes ou les membranes cellulaires peuvent être exploitées comme biocatalyseur dans un système bioréacteur. Cependant, la faible solubilité des principes actifs dans des milieux de bioconversion aqueuse limitent le rendement. Un bioréacteur biphasique a été étudié. En solution, plusieurs combinaisons eau/solvants organiques conciliant la viabilité des cellules, la solubilité des principes actifs et produits de réaction et la catalyse des complexes enzymatiques ont conduit à l’établissement d’un mélange approprié. Cependant, ces combinaisons présentent toujours une inhibition importante du pouvoir catalytique des complexes enzymatiques. Pour minimiser un effet dénaturant possible des solvants sur le système enzymatique, ce dernier a été maintenu dans un environnement aqueux en immobilisant les cellules et/ou les membranes cellulaires dans une matrice hydrophile. L’alginate de calcium apparaît être une matrice d’immobilisation idéale pour les membranes assurant la fonctionnalité du complexe CYP/HR et permettant en outre un stockage à long terme des préparations. Par contre, l’immobilisation des cellules dans diverses matrices, si elle permet une viabilité et une conservation à long terme des souches recombinantes, ne permet aucune expression de l’activité enzymatique présente dans les cellules. La combinaison d’une localisation du complexe hCYP/HR fonctionnel dans la membrane interne et d’une perméabilité réduite des cellules d’E. coli (immobilisées) en est une explication possible mais non-démontrée. Entre-temps, cette technologie de bioréacteur homogène biphasique ou par immobilisation des membranes cellulaires a été utilisée plusieurs reprises pour produire des métabolites humains à partir de divers principes actifs. Ces métabolites ont été purifiés avec succès, démontrant que cette approche technologique est compétitive comparée aux procédures conventionnelles. Néanmoins, de nouvelles pistes de recherche seraient extrêmement intéressantes. La localisation des complexes enzymatiques recombinants en surface des cellules permettrait de concilier les propriétés hydrophobes des principes actifs et l’environnement hydrophile nécessaire aux enzymes. D’autre part une investigation de complexes enzymatiques résistant aux solvants pourrait remplacer avantageusement l’immobilisation. |