Résumé : This doctoral research work focuses on the simulation of progressive collapse of reinforced concrete structures. It aims at contributing to the ‘alternate load path’ design approach suggested by the General Services Administration (GSA) and the Department of Defense (DoD) of the United States, by providing a detailed yet flexible numerical modelling tool.

The finite element formulation adopted here is based on a multilevel approach where the response at the structural level is naturally deduced from the behaviour of the constituents (concrete and steel) at the material level. One-dimensional nonlinear constitutive laws are used to model the material response of concrete and steel. These constitutive equations are introduced in a layered beam approach, where the cross-sections of the structural members are discretised through a finite number of layers. This modelling strategy allows deriving physically motivated relationships between generalised stresses and strains at the sectional level. Additionally, a gradual sectional strength degradation can be obtained as a consequence of the progressive failure of the constitutive layers. This means that complex nonlinear sectional responses exhibiting softening can be obtained even for simplified one dimensional constitutive laws for the constituents.

This numerical formulation is used in dynamic progressive collapse simulations to study the structural response of a multi-storey planar frame subject to a sudden column loss. The versatility of the proposed methodology allows assessing the influence of the main material and design parameters in the structural failure. Furthermore, the effect of particular modelling options of the progressive collapse simulation technique, such as the column removal time or the strategy adopted for the structural verification, can be evaluated.

The potential strain rate effects on the structural response of reinforced concrete frames are also investigated. To this end, a strain rate dependent material formulation is developed, where the rate effects are introduced in both the concrete and steel constitutive response. These effects are incorporated at the structural level through the multilayered beam approach. In order to assess the degree of rate dependence in progressive collapse, the results of rate dependent simulations are presented and compared to those obtained via the rate independent approach. The influence of certain parameters on the rate dependent structural failure is also studied.

The differences obtained in terms of progressive failure degree for the considered parametric variations and modelling options are analysed and discussed. The parameters observed to have a major influence on the structural response in a progressive collapse scenario are the ductility of the steel bars, the degree of symmetry and/or continuity of the reinforcement and the column removal time. The results also depend on the strategy considered (GSA vs DoD). The strain rate effects are confirmed to play a significant role in the failure pattern. Based on these observations, general recommendations for the design of progressive collapse resisting structures are finally derived.

L’effondrement progressif est un sujet de recherche qui a connu un grand développement suite aux événements désastreux qui se sont produits au cours des dernières décennies. Ce phénomène est déclenché par la défaillance soudaine d’un nombre réduit d’éléments porteurs de la structure, qui provoque une propagation en cascade de l’endommagement d’élément en élément jusqu’à affecter une partie importante, voire la totalité de l’ouvrage. Le résultat est donc disproportionné par rapport à la cause. La plupart des codes de construction ont inclus des prescriptions pour le dimensionnement des structures face aux actions accidentelles. Malheureusement, ces procédures se limitent à fournir des ‘règles de bonne pratique’, ou proposent des calculs simplifiés se caractérisant par un manque de détail pour permettre leur mise en oeuvre.

Cette thèse de doctorat intitulée Simulation de l’Effondrement Progressif des Structures en Béton Armé: Influence des Paramètres Materiaux et de Dimensionnement et Investigation des Effets de Vitesse a pour but de contribuer à la simulation numérique de l’effondrement progressif des structures en béton armé. Une formulation aux éléments finis basée sur une approche multi-échelles a été développée, où la réponse à l’échelle structurale est déduite à partir de la réponse au niveau matériel des constituants (le béton et l’acier). Les sections des éléments structuraux sont divisées en un nombre fini de couches pour lesquelles des lois constitutives unidimensionnelles sont postulées. Cet outil permet une dégradation graduelle de la résistance des sections en béton armé suite à la rupture progressive des couches. Des comportements complexes au niveau des points de Gauss peuvent être ainsi obtenus, et cela même à partir de lois unidimensionnelles pour les constituants.

Cette formulation est utilisée pour la simulation de l’effondrement progressif d’ossatures 2D, avec prise en compte des effets dynamiques. La versatilité de la présente stratégie numérique permet d’analyser l’influence de différents paramètres matériaux et de dimensionnement, ainsi que d’autres paramètres de modélisation, sur la réponse structurale face à la disparition soudaine d’une colonne.

Les effets de la vitesse de déformation sur le comportement des matériaux constituants est aussi un sujet d’attention dans ce travail de recherche. Des lois constitutives prenant en compte ces effets sont postulées et incorporées au niveau structural grâce à l’approche multi-couches. Le but est d’étudier l’influence des effets de la vitesse de chargement sur la réponse structurale face à la disparition d’un élément porteur. Les resultats obtenus à l’aide de cette approche avec effets de vitesse sont comparés à ceux obtenus avec des lois indépendantes de la vitesse.

Les différences dans la réponse à la disparition d’une colonne sont analysées pour les variations paramétriques étudiées. Les paramètres ayant une influence importante sont notamment: la ductilité des matériaux constituants et la disposition et/ou la symétrie des armatures. Les effets de vitesse sont également significatifs. Sur base de ces résultats, des recommandations sont proposées pour le dimensionnement et/ou l’analyse des structures face à l’effondrement progressif.