Résumé : Lors de ce travail, de fins films de polystyrène ont été déposés dans la post-décharge d’une torche plasma atmosphérique commerciale, mais aussi dans la décharge d’une DBD (Décharge à Barrière Diélectrique), conçue et développée par nos soins au laboratoire. Une DBD est un procédé permettant d’obtenir des plasmas froids à pression atmosphérique.

Nos résultats ont montré que la DBD permettait d’obtenir des films de polystyrène de meilleure qualité (degré d’oxydation moindre…) qu’avec la torche commerciale en raison de l’atmosphère contrôlée de l’enceinte DBD. Les films sont déposés en présence d’un gaz porteur (Ar ou He dans la DBD). Nous avons pu mettre en évidence l’influence de la nature de ce gaz porteur sur la structure des films (degré de branchement, et de réticulation des films et de préservation des cycles aromatiques de la molécule de départ).

Les dépôts de polystyrène sulfoné ont été synthétisés dans la DBD en une seule étape, par « copolymérisation » de deux précurseurs (styrène et acide trifluorométhane sulfonique) injectés simultanément dans la décharge. Ces membranes pourraient servir d’électrolyte dans les piles à combustibles miniaturisées de type PEMFC (« Polymer Electrolyte Membrane Fuel Cell »), utilisant de l’hydrogène ou du méthanol et ce pour des applications portables.

L’acide trifluorométhane sulfonique permet le greffage de groupements sulfoniques échangeurs d’ions (nécessaires pour la conductivité de la membrane) sur le squelette de polystyrène.

La complémentarité des différentes techniques spectroscopiques utilisées -Spectroscopie des Photoélectrons X (XPS), Infra-Rouge à Transformée de Fourier (FTIR), Spectroscopie des Ions Secondaires (SIMS) statique et dynamique- ont montré que les groupements acides sulfoniques (bien préservés dans la décharge à pression sub-atmosphérique) étaient bien greffés dans la matrice de polystyrène, et ce sur toute l’épaisseur de la membrane. L’influence des paramètres (température de l’acide, tension appliquée entre les électrodes, nature du gaz porteur…) sur la quantité de groupements ionisables greffés, sur la vitesse de dépôt et aussi sur la morphologie des films a été étudiée respectivement par XPS et par microscopie.

En plus des dépôts sur substrats usuels (Si, acier…) utilisés pour les caractérisations chimiques, nous avons synthétisé les films directement sur des électrodes de carbone enrichies en platine.

Nous avons déposé le catalyseur à partir d’une solution colloïdale de platine nébulisée dans la post-décharge d’une torche plasma atmosphérique sur des couches de carbones poreuse et sur du carbone vitreux (utilisé comme modèle pour le profilage par SIMS dynamique) dans différentes configurations et ce pour différents paramètres afin de constituer des électrodes servant de substrat pour l’adhésion de la membrane-plasma pour des perspectives d’assemblage membrane-électrodes pour PAC. /

\