Résumé : Biologically controlled mineralization implies that organisms devote a part of their physiological activity to build up a specific mineralized skeleton. A preliminary comprehensive general view of the morphology and physiology of a given organism is therefore required before trying to understand where and how its biomineralizing system functions. Furthermore, the entire biomineralization sequence is not mediated by purely inorganic mineralogical rules but rather by a cellular machinery. Accordingly, a mineralogical characterization should be linked to a histological and cytological investigation of mineralizing cells to understand how a skeleton is produced. In the present thesis, we developed such a multi-disciplinary approach of some biomineralization processes of the massive basal skeleton in a few Recent hypercalcified sponges, likely survivors from Palaeozoic and early Mesozoic seas.

The three first chapters of this thesis are dedicated to the Mediterranean Calcarea Petrobiona massiliana, a conveniently accessible living hypercalcified sponge whereas all other Recent hypercalcified species are tropical and less easily reached. This model species permitted an initial morphological approach followed by an integrated biological and mineralogical study of biomineralization mechanisms. The fourth chapter aims at the comparative mineralogical study of the basal skeleton of eight tropical Recent hypercalcified demonsponges.

In the first chapter, important modifications and/or morphogenesis at the tissular or cellular level in response to life cycle phases and environmental conditions were depicted in specimens of Petrobiona massiliana. A survey of “storage cells” filling trabecular tracts, which are specific to P. massiliana, suggested that these cells may provide energy and a pool of toti- or pluripotent cells able to restructure the aquiferous system and repopulate cell types like pinacocytes. This potentiality of "storage cells would allow the sponge to sustain important physiological activities, like calcification, along its life cycle. Furthermore, basopinacocytes, cells delineating basally the soft tissue from the underlying basal skeleton, were identified through ultrastructural observations as the most probable cell type involved in the formation of the basal skeleton.

In the second chapter, the skeleton was found to be composed of ca. 50 to 100 nm crystallized grains as the smallest skeletal units, likely initially deposited in a mushy amorphous state. TEM and SEM observations further highlighted that these submicronic grains were assembled in clusters or fibres, the later even laterally associated into bundles. A model of crystallization propagation through amorphous submicronic granular units is proposed to explain the single-crystal feature of these micron-scale structural units, as demonstrated by selected area electron diffraction (SAED) in TEM. Finally, these units were assembled into a defined microstructure forming flattened growth layers called "sclerodermites", which superposed to produce the massive basal skeleton. In addition, X-ray diffraction (XRD) and energy electron loss spectroscopy (EELS) analyses highlighted respectively heterogeneous concentration and spatial distribution of Mg and Ca ions in the skeleton and structural units. This characterization highlighted mineralogical features, not conforming to the inorganic principles, and presuming a highly biologically regulated construction of the basal skeleton.

Accordingly, in the third chapter, it arose that the endomembrane system of basopinacocytes might play a dual function in the production and transport of both mineralizing ions and organic matrices. Combining partial decalcification methods with histochemical dyes and observing ultra-thin sections of the mature basal skeleton in TEM, very spatially and functionally diverse organic matrix components were found to occur in growing and mature portions of the skeleton. The following model of biomineralization was proposed for Petrobiona massiliana: basopinacocytes would use the endomembrane system pathway to produce and carry organic-coated submicronic amorphous grains in a mushy state within intracellular vesicles. These would then be released through the basal cell membrane toward the growing layer of the skeleton, where a highly structured gel-like organic framework, rich in sulfated/acidic GAGs-rich macromolecules, secreted by basopinacocytes, would ensure their assemblage into oriented fibres or clusters.

In the fourth chapter, the basal skeleton of eight tropical Recent hypercalcified species belonging to demosponges: Acanthochaetetes wellsi, Willardia caicosensis, Astrosclera willeyana, Ceratoporella nicholsoni, Goreauiella auriculata, Hispidopetra miniana, Stromatospongia norae and Calcifibrospongia actinostromarioides, were compared. Some mineralogical nano- to submicronic patterns already observed in the Calcarea P. massiliana, appeared as general features: the occurrence of submicronic granular units, their coherent assemblage into monocrystalline fibres and bundles and the likely presence of organic material around all structural units. Additional features brought new insights in our comprehension of biomineralization mechanisms in hypercalcified sponges. Among them, micro-twin and stacking-fault planes aligned with the fibres/bundles axis and crossing over submicronic granular units characterized the skeleton of most aragonitic species. This highly supports the crystallization propagation model proposed for P. massiliana, although it additionally suggests that it should occur only after the oriented assemblage of submicronic grains. Furthermore, lighter transverse striations separated by few nanometres occurred systematically in fibres and bundles of the eight basal skeletons investigated, suggesting the involvement of nanoscale intracrystalline fibrils in the biological control.

In conclusion, this comparative study of nine Recent hypercalcified sponges belonging to phylogenetically distant taxa resulted in the proposition of a shared biomineralization model based on the production of micron and submicron-scale structural units to build up macro-scale basal skeletons under a high biological control. We suggest that the cellular toolkit used for the biologically controlled biomineralization in these sponges is very ancient

and was already developed by their early Palaeozoic ancestors. Furthermore, this model supports recent concepts of calcium carbonate biomineralization developed for example in corals, molluscs and echinoderms, suggesting an even more universal and ancestral character of initial biomineralization mechanisms in all Metazoa producing a calcium carbonate skeleton.

La minéralisation biologiquement contrôlée implique qu’un organisme consacre une partie de son activité physiologique à l'élaboration de son squelette. La connaissance de sa morphologie et de sa physiologie est donc une étape préliminaire indispensable pour comprendre les mécanismes de formation de celui-ci. L’entièreté du processus de biominéralisation ne dépend pas simplement de principes fondamentaux issus de la minéralogie inorganique mais aussi de mécanismes cellulaires particuliers. La caractérisation minéralogique d'un squelette devrait donc être systématiquement liée à une étude histologique et cytologique des cellules impliquées dans la formation du biominéral. La thèse présentée ici a suivi une telle approche multidisciplinaire de certains mécanismes de biominéralisation du squelette basal de plusieurs éponges hypercalcifiées actuelles, considérées comme reliques d'espèces plus anciennes du Paléozoïque et Mésozoïque.

Les trois premiers chapitres de cette thèse concernent l'espèce calcaire de Méditerranée, Petrobiona massiliana, une éponge hypercalcifiée actuelle plus accessible que d'autres principalement distribuées dans les mers tropicales. Une approche de sa morphologie générale a été réalisée en préliminaire à une étude de ses mécanismes de biominéralisation, intégrant une caractérisation minéralogique et biologique. Le quatrième chapitre compare d’un point de vue minéralogique le squelette basal de huit autres espèces hypercalcifiées tropicales appartenant aux démosponges.

Au cours du premier chapitre, d'importantes modifications morphogénétiques à l'échelle tissulaire et cellulaire, liées à certaines phases du cycle biologique et aux conditions environnementales, ont ainsi été mises en évidence chez Petrobiona massiliana. Par l'observation de modifications de l'organisation et de l'ultrastructure des cellules de réserves remplissant les cordons trabéculaires, structures spécifiques de l'espèce, un rôle dans l'approvisionnement nutritif des cellules de l'éponge ainsi qu'un caractère toti- ou pluripotent leur ont été conférés. Les fonctions potentielles de ces cellules dites de réserves pourraient permettre à l'éponge de maintenir des activités physiologiques importantes, telles que la calcification, au cours de son cycle vital. Finalement, l'analyse ultrastructurale des tissus de P. massiliana a permis d'identifier les basopinacocytes, cellules délimitant les tissus mous du squelette basal, comme le type cellulaire ayant le plus de probabilité d'être impliqué dans la formation de ce dernier.

Dans le deuxième chapitre, des granules de 50 à 100 nm de diamètre se sont avérés les plus petites unités structurales du squelette basal de Petrobiona massiliana, probablement déposées initialement dans un état amorphe à consistance molle. Des observations en MEB et MET ont mis en évidence l'assemblage de ces granules en amas ou fibres, ces dernières étant elles-mêmes latéralement associées en faisceaux. Un modèle impliquant la propagation de la

cristallisation au travers de ces assemblages de granules submicroniques a été établi pour expliquer le caractère monocristallin des unités microstructurales, démontré par diffraction électronique en MET. Leur assemblage en une microstructure particulière produisant des couches\