Résumé : Les canaux chlore volume-sensibles (VRACs) régulent les activités différenciatives, migratoires et prolifératives des fibroblastes et pourraient donc être impliqués dans la pathobiologie de l’hypertension artérielle pulmonaire (HTAP) et la fibrose pulmonaire interstitielle (FPI). Diverses études antérieures ont montré que l’endothéline-1 (ET1) a des propriétés pro-fibrosantes, en plus cette molécule participe au remodelage des artérioles pulmonaires dans l’HTAP. D’autre part, ces pathologies d’HTAP et de fibrose pulmonaire peuvent être antagonisées par la mélatonine et par l’interaction entre protéines de morphogenèse (BMPs: bone morphogenetic proteins) et leur récepteur 2 (BMPR2).

La première partie de mon travail s’est intéressée aux effets de la BMP2 et de l’endothéline1 sur les canaux chlore volume-sensibles de fibroblastes pulmonaires.

La stimulation hypotonique du courant a été inhibée par la BMP2 en dépendance de la dose appliquée et de la durée d’exposition à la molécule. Un maximum d’effet de la BMP2 a été observé avec une concentration de 10ng/ml pendant 45min de prétraitement. En plus, les courants chlore volume-sensibles, inhibés par la BMP2, se sont restaurés en présence de l’inhibiteur spécifique de la voie de la protéine kinase C (PKC), le GFX. D’autre part, le prétraitement des fibroblastes avec l’ET1 à 100μM pendant 2heures a induit l’apparition d’un courant activable par l’acide lysophosphatidique (ICl-LPA) (marqueur de la différenciation des fibroblastes) et l’expression de l’α-sma (alpha smooth muscle actin, marqueur classique des myofibroblastes). La migration des fibroblastes a été aussi induite en présence de l’ET1, alors que l’inhibition des canaux chlore par le DIDS (Diisothiocyanatostilbene-disulfonic acid) a bloqué cet effet. La BMP2 s’est opposée à l'effet de l’ET1 sur la différenciation des fibroblastes par l’inhibition de l’induction du courant ICl-LPA et de l’expression génique de l’α-sma. En plus, la migration des fibroblastes, induite par l’ET1, a été inhibée par la BMP2. Nous avons aussi montré que l’expression de gène du canal anoctamine6 a été stimulée par l’ET1, alors la BMP2 s’est opposée à cet effet, ce qui suggère que l’anoctamine6 est le canal responsable de la différenciation des fibroblastes marquée par l’apparition du courant ICl-LPA. Il apparaît donc que l’ET1 et la BMP2 ont des effets opposés sur la différenciation et la migration des fibroblastes pulmonaires via leurs effets sur l’activité et l’expression des canaux chlore volume-sensibles.

La deuxième partie du travail s’est intéressée à l’effet de la mélatonine sur les canaux chlore volume-sensibles de fibroblastes L929 et aux conséquences de cet effet sur la migration et la prolifération de ces cellules. Le prétraitement des fibroblastes avec 100μM de mélatonine pendant 30min a inhibé significativement l’activation des canaux chlore volume-sensibles. En plus, une concentration de 100 nM pendant une nuit a donné le même effet observé avec la mélatonine à 100μM pendant 30 min. Nous avons aussi constaté que l’inhibition des VRACs par la mélatonine a été dose-dépendante. L’effet de la mélatonine sur les VRACs a été inhibé en présence de l’antagoniste non sélectif des récepteurs de la mélatonine (Luzindole) et l’antagoniste sélectif pour le récepteur 2 (MT2) de la mélatonine (K185). En plus, l’inhibiteur de la voie de la PKC (GFX) a empêché la mélatonine d’agir sur les canaux chlore volume-sensibles. Ces résultats suggèrent que la mélatonine agit sur les VRACs en se fixant sur MT2 et en activant la voie de la PKC. L’inhibition des VRACs par la mélatonine a eu pour conséquence l’inhibition du phénomène de RVD (regulatory volume decrease), qui suit le gonflement hypotonique. Nous avons aussi montré que la migration des fibroblastes L929 a été inhibée par la mélatonine à 100μM et cela via l’inhibition des VRACs, puisque la mélatonine s’est montrée incapable d’induire une inhibition supplémentaire de la migration en présence de l’inhibiteur des canaux chlore volume-sensibles (DIDS). En plus, l’antagoniste non sélectif des récepteurs de la mélatonine (luzindole), l’antagoniste sélectif pour MT2 (K185) et l’inhibiteur de la voie de PKC (GFX) ont provoqué la disparition de l’effet de la mélatonine sur la migration. Cela suggère que la mélatonine agit sur la migration via les voies empruntées pour l’inhibition des VRACs. L’inhibition des VRACs, par la mélatonine et le DIDS, n'a pas induit d'inhibition significative sur la prolifération des fibroblastes L929, ce qui veut dire que l’inhibition des VRACs est insuffisante pour induire une inhibition significative de la prolifération. Donc, la mélatonine inhibe les canaux chlore volume-sensibles via sa fixation sur MT2 et l’activation de la voie de la PKC. Cela a pour conséquence l’inhibition du RVD et de la migration des fibroblastes L929, mais cette inhibition des VRACs est insuffisante pour inhiber la prolifération de ces cellules.

En conclusion, j’ai pu montrer l’importance des canaux chlore volume-sensibles dans la régulation de la physiologie des fibroblastes et leurs interactions avec des médiateurs d’affections pulmonaires à composante fibrosante, telles que l’HTAP et la FPI./

Volume-regulated anion channels (VRACs) regulate fibroblast differentiation, migration and proliferation. Fibroblasts have been shown to be involved in several pathologic states including pulmonary arterial hypertension (PAH) and interstitial pulmonary fibrosis (IPF). A number of previous studies have shown that endothelin-1 (ET1) has pro-fibrotic properties and participates in the remodeling of pulmonary arterioles in PAH. On the other hand, PAH and IPF may be controlled by melatonin and bone morphogenetic protein receptor 2 (BMPR2) signaling.

The first part of my work described the effects of BMP2 and ET1 on the VRAC in the pulmonary fibroblasts and the consequences of these effects on differentiation and migration of these cells. Pretreatment of fibroblasts with BMP2 inhibited hypotonic current stimulation and this effect was dependent on the BMP2 concentration and on the time of exposition to the molecule. The maximum effect of BMP2 was observed at a concentration of 10ng/ml for 45 min of pretreatment. In addition, volume-sensitive chloride current, inhibited by BMP2, was restored in presence of PKC (protein kinase C) pathway inhibitor (GFX). On the other hand, the pretreatment of fibroblasts with100μM of ET1 for 2 hours, induced the appearance of a lysophosphatidic acid-activable chloride current (ICl-LPA) (a marker of fibroblast differentiation) and stimulated the expression of the smooth muscle actin alpha (α-sma) (the classical marker of myofibroblasts). ET1 also stimulated fibroblast migration, while the inhibition of chloride channels by (DIDS) (Diisothiocyanatostilbene disulfonic acid) bloked this effect. The BMP2 opposed the effect of ET1 on fibroblast differentiation by preventing the induction of ICl-LPA current and α-sma gene expression. In addition, BMP2 inhibited the fibroblast migration induced by ET1. We have also shown that ET1 stimulated anoctamin6 channel gene expression and that BMP2 opposed this effect, which suggests the implication of anoctamin6 on fibroblast differentiation marked by the appearance of ICl-LPA current. Thus, ET1 and BMP2 have opposite effects on pulmonary fibroblast differentiation and migration via their effects on the activity and expression of volume-regulated anion channels.

The second part of the work focused on the effect of melatonin, which is a vasorelaxant and antifibrotic agent, on the volume-sensitive chloride channels in L929 fibroblasts and primary rat fibroblasts and on the consequences of this effect on migration and proliferation of these cells. Fibroblast pretreatment with 100μM of melatonin for 30 min significantly inhibited the activation of volume-sensitive chloride channels. In addition, a concentration of 100 nM of melatonin overnight produced the same effect observed with melatonin at 100μM for 30 min. The effect of melatonin on VRAC current was dose-dependent. Inhibition of VRACs by melatonin resulted the inhibition of the RVD phenomenon (Regulatory Volume Decrease) following the hypotonic swelling. The effect of melatonin on VRACs was inhibited in the presence of the non-selective antagonist of melatonin receptors (Luzindole) and the selective antagonist of the melatonin receptor 2 (MT2), the K185. In addition, the PKC pathway inhibitor (GFX) inhibited the effect of melatonin on the volume-sensitive chloride channels. These results suggest that, melatonin acts on the VRACs by binding to MT2 and by activating the PKC pathway. We have also shown that the L929 fibroblast migration was inhibited by melatonin (100μM) via inhibition of VRAC channels, since melatonin was unable to induce further inhibition of migration in the presence of the volume-sensitive chloride channels inhibitor (DIDS). In addition, the non-selective melatonin receptors antagonist (luzindole), the selective antagonist for MT2 (K185) and the PKC pathway inhibitor (GFX), blocked the effect of melatonin on migration, which suggests that melatonin acts on migration via the same pathways that inhibit VRAC channels. Inhibition of VRACs by melatonin and DIDS have not shown any significant inhibition of L929 fibroblast proliferation, which means that the VRAC inhibition is not sufficient to induce a significant inhibition of proliferation. Thus, melatonin inhibits volume-sensitive chloride channels via its binding to MT2 and activation of the PKC pathway. This has as consequences the inhibition of RVD and migration of L929 fibroblasts but insufficient to inhibit the proliferation of these cells.

In conclusion, I have shown the importance of volume-sensitive chloride channels in the regulation of fibroblast physiology and its interactions with ET-1, BMP and melatonin signaling. These results are compatible with the notion that the participation of fibroblasts in the pathobiology of PAH or IPF is mediated by VRAC channels, which can be activated by ET-1 and inhibited by BMP’s or melatonin. The translational relevance of these findings will have to be investigated on fibroblasts from patients with PAH or IPF, or from animal models of pulmonary hypertension or lung fibrosis.