Thèse de doctorat
Résumé : Dans les problèmes inverses en imagerie, on suppose généralement connu l’opérateur ou matrice décrivant le système de formation de l’image. De façon équivalente pour un système linéaire, on suppose connue sa réponse impulsionnelle. Toutefois, ceci n’est pas une hypothèse réaliste pour de nombreuses applications pratiques pour lesquelles cet opérateur n’est en fait pas connu (ou n’est connu qu’approximativement). On a alors affaire à un problème d’inversion dite “aveugle”. Dans le cas de systèmes invariants par translation, on parle de “déconvolution aveugle” car à la fois l’image ou objet de départ et la réponse impulsionnelle doivent être estimées à partir de la seule image observée qui résulte d’une convolution et est affectée d’erreurs de mesure. Ce problème est notoirement difficile et pour pallier les ambiguïtés et les instabilités numériques inhérentes à ce type d’inversions, il faut recourir à des informations ou contraintes supplémentaires, telles que la positivité qui s’est avérée un levier de stabilisation puissant dans les problèmes d’imagerie non aveugle. La thèse propose de nouveaux algorithmes d’inversion aveugle dans un cadre discret ou discrétisé, en supposant que l’image inconnue, la matrice à inverser et les données sont positives. Le problème est formulé comme un problème d’optimisation (non convexe) où le terme d’attache aux données à minimiser, modélisant soit le cas de données de type Poisson (divergence de Kullback-Leibler) ou affectées de bruit gaussien (moindres carrés), est augmenté par des termes de pénalité sur les inconnues du problème. La stratégie d’optimisation consiste en des ajustements alternés de l’image à reconstruire et de la matrice à inverser qui sont de type multiplicatif et résultent de la minimisation de fonctions coût “surrogées” valables dans le cas positif. Le cadre assez général permet d’utiliser plusieurs types de pénalités, y compris sur la variation totale (lissée) de l’image. Une normalisation éventuelle de la réponse impulsionnelle ou de la matrice est également prévue à chaque itération. Des résultats de convergence pour ces algorithmes sont établis dans la thèse, tant en ce qui concerne la décroissance des fonctions coût que la convergence de la suite des itérés vers un point stationnaire. La méthodologie proposée est validée avec succès par des simulations numériques relatives à différentes applications telle que la déconvolution aveugle d'images en astronomie, la factorisation en matrices positives pour l’imagerie hyperspectrale et la déconvolution de densités en statistique.