Article révisé par les pairs
Résumé : The lack of awareness of the exact number of instantaneous centers of knee flexion/extension rotation leads to the presence in the market of total knee arthroplasty (TKA) femoral components designed under different hypotheses. Although single radius (SR) designs are thought to replicate the physiological behavior in a more realistic way, surgeons do not always agree about the veracity of their theoretical advantages with respect to the multiple radii components (J-curve (JC) design). Apart from clinical studies, up to now, any literature study biomechanically and exhaustively compares these two TKA solutions, thus a finite element analysis (FEA) has been carried out. In particular, two models were defined to analyze the performance of a SR design and a JC design with the same tibial component during gait cycle and squat motor task. Tibio-femoral kinematics and kinetics have been investigated comparing the resulting contact area between components, internal-external (IE) rotation, position and magnitude of the center of total forces due to contact pressure and polyethylene von Misses stresses. Results demonstrate that, for low demanding tasks, there are no significant differences between the two designs, however, during the squat motor task, some changes in contact force and increases in polyethylene stress were identified for the SR solution.