Résumé : The goal of the present study is to investigate analytically, numerically and experimentally the instability of the displacement of viscous fluid by a less viscous one in a two-dimensional channel, and to determine characteristic size of entrapment zones. Experiments on miscible displacement of fluids in Hele-Shaw cells were conducted under microgravity conditions. Extensive direct numerical simulations allowed to investigate the sensitivity of the displacement process to variation of values of the main governing parameters. Validation of the code was performed by comparing the results of model problems simulations with experiments and with the existing solutions published in literature. Taking into account non-linear effects in fluids displacement allowed to explain new experimental results on the pear-shape of fingers and periodical separation of their tip elements from the main body of displacing fluid. Those separated blobs of less viscous fluid move much faster than the mean flow of the displaced viscous fluid. The results of numerical simulations processed based on the dimensions analysis allow to introduce criteria characterizing the quality of displacement. The functional dependence of the dimensionless criteria on the values of governing parameters needs further investigations.