par Quesne, Christiane
Référence Journal of mathematical physics, 56, 1, 1.4906113
Publication Publié, 2015-01
Article révisé par les pairs
Résumé : The classical nonlinear oscillator, proposed by Mathews and Lakshmanan [Q. Appl. Math. 32, 215 (1974)] and including a position-dependent mass in the kinetic energy term, is generalized in two different ways by adding an extra term to the potential. The solutions of the Euler-Lagrange equation are shown to exhibit richer behaviour patterns than those of the original nonlinear oscillator.