par Andris, Fabienne ;Leo, Oberdan
Référence International reviews of immunology, 34, 1, page (67-81)
Publication Publié, 2015-01
Article révisé par les pairs
Résumé : Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine kinase that is crucial for cellular energy metabolism homeostasis. AMPK monitors cellular energy status in response to nutritional variations and, once activated by low energy status, switches on ATP-producing catabolic pathways and switches off ATP-consuming anabolic pathways to restore cellular energy homeostasis. When T lymphocytes encounter foreign antigens, they initiate a program of differentiation leading to the rapid generation of effector and memory cells that clear the pathogen and prevent future infection, respectively. Differentiation of naïve T cells in effector or long term memory cells is tightly associated with changes in their energy metabolic activity and recent data have revealed that fine-tuning of metabolism could modulate T cell functions. Here, we will review recent data about the regulation of T cell metabolism by AMPK and discuss its influence on T cell function.