par Provata, Astero ;Nicolis, C. ;Nicolis, Grégoire
Référence Computational biology and chemistry, 53, PA, page (5-14)
Publication Publié, 2014
Article révisé par les pairs
Résumé : Complexity measures are used to compare the genomic characteristics of five organisms belonging to distinct classes spanning the evolutionary tree: higher eukaryotes, amoebae, unicellular eukaryotes and bacteria. The comparisons are undertaken using the full four-letter alphabet and the coarse grained two-letter alphabets AG-CT and AT-CG. We show that the conditional probability matrix for the four-letter and AT-CG alphabet is markedly asymmetric in eukaryotes while it is nearly symmetric in bacterial genomes. Spatial asymmetry is revealed in the four-letter alphabet, signifying that the probability fluxes are nonvanishing and thus the reading sense of a sequence is irreversible for all organisms. Calculations of the block entropy and excess entropy demonstrate that the human genome accommodates better all possible block configurations, especially for long blocks. With respect to point-to-point details and to spatial arrangement of blocks the exit distance distributions from a particular letter demonstrate long distance characteristics in the eukaryotic sequences for all three alphabets, while the bacterial (prokaryotic) genomes deviate indicating short range characteristics. Overall, the conditional probability, the fluxes, the block entropy content and the exit distance distributions can be used as markers, discriminating between eukaryotic and prokaryotic DNA, allowing in many cases to discern details related to finer classes. In all cases the reduction from four letters to two masks some important statistical and spatial properties, with the AT-CG alphabet having higher ability of discrimination than the AG-CT one. In particular, the AT-CG alphabet reduction accentuates the CpG related properties (conditional probabilities w32, long ranged exit distance distribution for A and T nucleotides), but masks sequence asymmetry and irreversibility in all examined organisms.