Article révisé par les pairs
Résumé : The theory of the transferred nuclear Overhauser effect is presented in the framework of an extended relaxation matrix representation. This matrix representation allows a coherent description of all one- and two-dimensional experiments. We present analytical solutions for the buildup of magnetization in the 2D transfer-NOE experiment, for all ratios of the off rate k to the cross-relaxation rates R involved. We show that systematic deviations in distance determination occur when the off rate becomes comparable to or smaller than the relaxation rates. Experimental results on the peptide/protein system oxytocin/neurophysin confirming this analysis are presented. The importance of residual mobility in the bound ligand, as demonstrated by the experimental data, is also discussed. © 1992.