par Cheng, Daojian ;Hou, Marc
Référence The European physical journal. B. Condensed matter physic, 74, 3, page (379-390)
Publication Publié, 2010-04
Article révisé par les pairs
Résumé : Classical molecular dynamics and Metropolis Monte Carlo simulations were carried out to investigate the thermal stability and melting behaviors of free-standing Pd-Pt bimetallic nanowires (NWs) with pentagonal multi-shell-type (PMS-type) structure in the whole composition range. Equilibrium configurations at 100 K are predicted in the semi-grand canonical ensemble. Pd-Pt PMS-type NWs are stable with a multishell structure of alternating Pd and Pt compositions and Pd segregating systematically to the surface. On thermal heating, an interesting composition-dependent structural transformation from the PMS-type to face-centred-cubic (FCC) by overcoming a high energy barrier is observed for Pd-Pt bimetallic NWs before the melting. Consequently, the system energy is decreased. The FCC structure is found more stable than PMS-type over the whole range of composition. The melting of Pd-Pt bimetallic NWs is also studied. It is found to start at the edges, then propagate over the whole surface, and next to the interior. It occurs in a composition-dependent range of temperature. © 2010 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.