par Frérot, Hélène;Lefebvre, Claude ;Gruber, Wolf ;Collin, Christian;Santos, Dos A.D.;Escarre Blanch, José
Référence Plant and soil, 282, 1-2, page (53-65)
Publication Publié, 2006-04
Référence Plant and soil, 282, 1-2, page (53-65)
Publication Publié, 2006-04
Article révisé par les pairs
Résumé : | At present, no efficient technique is available for cleaning up soils which are highly polluted by heavy metals. Limiting the movement of pollutants out of the contaminated area by creating a dense and persistent plant cover appears to be the more reasonable approach. In this context, phytostabilization is a technique that uses metallicolous plants to revegetate highly polluted soils. This paper presents the results of an experiment performed in situ using metallicolous ecotypes of four plant species native to the Mediterranean French region, and grown in different combinations at a polluted site over two years. The soils were highly polluted with zinc, cadmium and lead. The aim was to find the best species mixture in terms of cover, biomass and duration. The four species used were the biennial legume Anthyllis vulneraria, two perennial grasses, Festuca arvernensis and Koeleria vallesiana, and the perennial forb Armeria arenaria. Mixtures which included A. vulneraria, and especially when in combination with F. arvernensis, showed the highest values of cover and biomass. After flowering, the biennial individuals of A. vulneraria disappeared but subsequent germination and survival of seedlings occurred abundantly under the two grasses. Mixtures with A. arenaria showed the lowest values of cover and biomass. Soil nitrogen increased in the plots with A. vulneraria as well as the concentration of essential nutrients (N P K) in the aerial parts of the two grasses. In contrast, the concentration of metals (Zn Pb Cd) decreased in the aboveground biomass of the latter in the same plots. These results show that reciprocal facilitation effects can act in heavy metal polluted environments, and that phytostabilization efforts in the Mediterranean region can be improved by using mixtures including local metallicolous legume and grass species. © Springer 2006. |