par Quesne, Christiane ;Vansteenkiste, Nicolas
Référence Journal of Physics A: General Physics, 28, 23, page (7019-7025), 039
Publication Publié, 1995
Référence Journal of Physics A: General Physics, 28, 23, page (7019-7025), 039
Publication Publié, 1995
Article révisé par les pairs
Résumé : | In a recent paper Oh and Singh determined a Hopf structure for a generalized q-oscillator algebra. We prove that under some general assumptions, the latter is, apart from some algebras isomorphic to suq(2), su q(1,1), or their undeformed counterparts, the only generalized deformed oscillator algebra that supports a Hopf structure. We show in addition that the latter can be equipped with a universal R-matrix, thereby making it into a quasitriangular Hopf algebra. |