par Baras, Florence ;Coullet, Pierre;Tirapegui, Enrique
Référence Journal of statistical physics, 45, 3-4, page (745-752)
Publication Publié, 1986-11
Référence Journal of statistical physics, 45, 3-4, page (745-752)
Publication Publié, 1986-11
Article révisé par les pairs
Résumé : | The asymptotic behavior of coupled Langevin equations in the limit of weak noise is studied by general normal form techniques, in the vicinity of a pitchfork bifurcation. The non-Gaussian behavior of the critical variable is established. The conditional probability of the noncritical variable around the center manifold is determined. It is shown that in certain cases the distribution of this later variable may be non-Gaussian. © 1986 Plenum Publishing Corporation. |