par Moshinsky, Marcos;Quesne, Christiane
Référence Journal of mathematical physics, 12, 8, page (1772-1780)
Publication Publié, 1971
Article révisé par les pairs
Résumé : We show that the group of linear canonical transformations in a 2N-dimensional phase space is the real symplectic group Sp(2N), and discuss its unitary representation in quantum mechanics when the N coordinates are diagonal. We show that this Sp(2N) group is the well-known dynamical group of the N-dimensional harmonic oscillator. Finally, we study the case of n particles in a q-dimensional oscillator potential, for which N = nq, and discuss the chain of groups Sp(2nq) ⊃ Sp(2n) X script O sign(q). An application to the calculation of matrix elements is given in a following paper.