Résumé : Hectometer wide cryptokarsts in Paleozoic limestone from Southern Belgium have been studied, to determine to what extent U, Th, Pb and rare earth elements (REE) have been mobilized in the karst sedimentary filling, during a Miocene weathering event. The weathering process resulted in the massive halloysite/kaolinite formation at the karst wall. As with most fossil systems, data on weathering fluid chemistry are lacking, hence it is difficult to quantify relevant parameters such as pH, Eh, and to address solution chemistry. However, on the basis of both field studies of more recent systems, and of geochemical modeling, it is proposed that moderately acid fluids percolated through a multi-layer sedimentary filling, in near-surface conditions and in a temperate/warm climate. Special attention is paid to the trace element immobilization/trapping processes, in newly crystallized REE phosphates, at the karst wall. Analytical methods used include major/trace element geochemistry (emission ICP, ICP-MS) and mineralogy (XRD, SEM, TEM, microprobe). The results suggest that both the sandy sediments that are in contact with the karst carbonate wall, and the carbonate wall itself acted as a kind of geochemical "barrier". Mineralization cells settled there, at the decimeter to meter scale. This results in sequential trace element (Pb, Th, REE, U) trapping, according to the affinity of these elements for the aqueous solution. At the end of the sequence, minute U-rich automorphic (Ce, Nd) monazite crystals (from 3 nm upwards) formed on kaolinite flakes. Though the analogy between the studied cryptokarst and planned surface-based repositories for low-level radioactive waste (LLW) in argillaceous context is far from complete, the results outlined here are relevant because they show that even in natural - i.e. intrinsically uncontrolled and unmonitored - systems, "pollutant" radionuclide (U, Th, REE, Pb) migration paths are often limited in space. Various processes converge towards trapping of these elements, that are present in the radioactive waste. © 2002 Elsevier Science Ltd. All rights reserved.