par Sebille, Michel
Référence Discrete mathematics, 240, 1-3, page (197-204)
Publication Publié, 2001-09
Référence Discrete mathematics, 240, 1-3, page (197-204)
Publication Publié, 2001-09
Article révisé par les pairs
Résumé : | In 1994, van Trung (Discrete Math. 128 (1994) 337-348) [9] proved that if, for some positive integers d and h, there exists an Sλ(t,k,v) such that formula presented then there exists an Sλ(v-t+⊥)(t,k,v + 1) having v + 1 pairwise disjoint subdesigns Sλ(t,k,v). Moreover, if Bi and Bj are any two blocks belonging to two distinct such subdesigns, then d ≤ |