par Dujmović, Vida V.;Fijavz, Gasper;Joret, Gwenaël ;Sulanke, Thom;Wood, D.
Référence European journal of combinatorics, 32, 8, page (1244–1252)
Publication Publié, 2011
Référence European journal of combinatorics, 32, 8, page (1244–1252)
Publication Publié, 2011
Article révisé par les pairs
Résumé : | This paper studies the following question: given a surface σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in σ? We characterise the extremal graphs for this question, and prove that the answer is between 8(n-ω)+2 ω and 8n+5/2 2 ω+o(2 ω), where ω is the maximum integer such that the complete graph K ω embeds in σ. For the surfaces S 0, S 1, S 2, N 1, N 2, N 3 and N 4 we establish an exact answer. © 2011 David Wood. |