Article révisé par les pairs
Résumé : Carbon nanofibers were fluorinated in two manners, in pure fluorine gas (direct fluorination) and with a fluorinating agent (TbF4 during the so-called controlled fluorination). The resulting fluorinated nanofibers have been investigated by solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). This underlines that the fluorination mechanisms differ since a (CF)n structural type is obtained, whatever the temperature, with the controlled reaction, whereas, during the direct process, a (C2F)n type is formed over a wide temperature range. Through a careful characterization of the products, i.e. density of dangling bonds (as internal paramagnetic centers), structural type (acting on molecular motion) and specific surface area (related to the amount of physisorbed O2), the effect of atmospheric oxygen molecules on the spin-lattice nuclear relaxation has been underlined. © 2008.