par Pacheco, Jorge J.M.;Lenaerts, Tom ;Santos, Francisco C.
Référence Lecture notes in computer science, 4648 LNAI, page (535-544)
Publication Publié, 2007
Article révisé par les pairs
Résumé : Often the selfish and strong are believed to be favored by natural selection, even though cooperative interactions thrive at all levels of organization in living systems. Recent empirical data shows that networks representing the social interactions between people exhibit typically high average connectivity and associated single-to-broad-scale heterogeneity, a feature which precludes the emergence of cooperation in any static network. Here, we employ a model in which individuals are able to self-organize both their strategy and their social ties throughout evolution, based exclusively on their self-interest. The entangled evolution of individual strategy and network structure provides a key mechanism toward the sustainability of cooperation in social networks. The results show that simple topological dynamics reflecting the individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with associated single-to-broad-scale heterogeneity, in which cooperation thrives. © Springer-Verlag Berlin Heidelberg 2007.