Résumé : A three-element model of the cardiovascular system was used to monitor stroke volume (SV) changes during parabolic flight. Aortic blood flow was estimated from continuous arterial finger pressure and SV computed by integrating simulated aortic flow during each systole. SV was significantly higher in microgravity (μG) compared to IG whereas in hypergravity (hG), SV was significantly lower. Exponential SV transients were observed after the transitions to and from μG and the succeeding or proceeding hG phases. These SV transients present different time constants, which reflect two different mechanisms of cardiovascular adaptation to sudden gravitational changes. These results show that beat-to-beat computation of SV provides noninvasive information on circulatory adaptation to acute hydrostatic pressure changes.