par Fiorini, Samuel
;Joret, Gwenaël
;Pietropaoli, Ugo 
Référence Lecture notes in computer science, 6080 LNCS, page (191-204)
Publication Publié, 2010



Référence Lecture notes in computer science, 6080 LNCS, page (191-204)
Publication Publié, 2010
Article révisé par les pairs
Résumé : | We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is Θ(logn), where n denotes the number of vertices in the graph. © 2010 Springer-Verlag. |