par Manos, Thanos;Skokos, Ch;Antonopoulos, Chris
Référence International journal of bifurcation and chaos in applied sciences and engineering, 22, 9, 1250218
Publication Publié, 2012-09
Article révisé par les pairs
Résumé : As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper, we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits, the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around nonzero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using the components of deviation vectors orthogonal to the direction of motion for the computation of GALIs, the indices of stable periodic orbits behave for flows as they do for maps. © 2012 World Scientific Publishing Company.