Article révisé par les pairs
Résumé : We compute the Milky Way potential in different cold dark matter (CDM) based models, and compare these with the MOdified Newtonian Dynamics (MOND) framework. We calculate the axial ratio of the potential in various models, and find that isopotentials are less spherical in MOND than in CDM potentials. As an application of these models, we predict the escape velocity as a function of the position in the Galaxy. This could be useful in comparing with future data from planned or already-underway kinematic surveys (RAVE, SDSS, SEGUE, SIM, Gaia or the hypervelocity stars survey). In addition, the predicted escape velocity is compared with the recently measured high proper motion velocity of the Large Magellanic Cloud (LMC). To bind the LMC to the Galaxy in a MOND model, while still being compatible with the RAVE-measured local escape speed at the Sun's position, we show that an external field modulus of less than 0.03a 0 is needed. © 2008 RAS.