Résumé : More than one third of thyroglobulin (1190 residues out of 2750) is made of one peptide motif repeated ten times in tandem. Segments unrelated to the motif interrupt this structure at various places. The corresponding gene region, which extends over 40 x 10(3) bases, was studied in detail. All exon borders and exon/intron junctions were localized precisely and sequenced, and their positions were correlated with the repetitive organization of the protein. When intron positions were compiled on a consensus sequence of all repeats, three categories of introns were observed. Except between repeats numbers 5 and 6, an intron was invariably found within the Cys codon making the limit of each motif. This category of intron most probably reflects the serial duplication events responsible for the evolution of this region of the gene. All other introns, except no. 2, are found at positions were the repetitive structure is disrupted by "inserted" peptides. We present the hypothesis that this second category of introns was already present in the original unit before the first duplication. Thereafter, they would have experienced either complete loss (some units do not contain any intron) or partial or total exonization, resulting in the slipping of intronic material into coding sequence. Intron no. 2, finally, separates motif no. 1 at a position on the boundary between two segments presenting sequence homology. This last type of intron probably reflects an initial duplication event at the origin of a primordial thyroglobulin gene motif. With all these characteristics, the thyroglobulin gene is presented as a paradigm for the analysis of the fate of introns in gene evolution.