Article révisé par les pairs
Résumé : There exists an instrument SODI (Selected Optical Diagnostic Instrument) on the ISS where series of the DCMIX (Diffusion Coefficients in Mixtures) experiments are conducted by members of the ESA Topical Team. The study is addressed to the performance of thermal design of SODI instrument for DCMIX configuration. We report the results on the temperature fields which were measured interferometrically both in two ground setups (one thermally optimized; the other one, the engineering model of the ISS SODI-DCMIX experiment: non optimized) and in the ISS experiment itself with the respective numerical simulations. Even though monitoring of the cell with binary mixture THN-nC 12 employs only an interferometer with one wave length instead of two for other cells with ternary mixtures, it gives valuable information about the instrument performance. Temperature and concentration fields observed during the tests in the engineering model are compared with those obtained in laboratory experiments with the same liquid, with numerical simulations and with first results from the ISS in Run #16. The thermal design of the microgravity cell, being not optimized for ground experiments, exhibits a promising performance in the weightlessness condition. © 2013 Springer Science+Business Media Dordrecht.