Article révisé par les pairs
Résumé : Under the hymenopteran single-locus complementary sex-determination system, production of diploid males results from homozygosity at the sex-determiner locus. This arises when both parents transmit identical alleles at the locus to the offspring. In species reproducing asexually through thelytokous parthenogenesis, production of diploid males may also occur when the sex locus undergoes recombination and becomes homozygous in the offspring. Diploid males represent a substantial genetic load in hymenopteran populations because they often produce unviable sperm or sire sterile triploid female offspring. In the Mediterranean ant Cataglyphis cursor, the queen and workers can produce female offspring through automictic thelytokous parthenogenesis with central fusion, a mode of parthenogenesis that increases homozygosity. We report, for the first time, the presence of about 39 % of colonies producing adult diploid males (seven colonies out of 18). Overall, 8 % of adult males were diploid (12 diploid males out of the 146 males genotyped). Genotyping workers from the seven colonies producing diploid males showed that three diploid males were sons of queens and produced by thelytoky, six were probably sons of workers also produced by thelytoky and three were non-natal. Furthermore, the mating of a diploid male with two virgin queens in the laboratory led to the production of sterile triploid workers, which shows that diploid males in C. cursor are fertile, mate successfully and produce viable and functional but probably sterile female offspring. Because diploid males originate from thelytokous reproduction, they are only produced during sexual production and hence do not impair colony growth, which could explain why they are not removed at early brood stages. © 2013 Springer-Verlag Berlin Heidelberg.