par Michelena, Pablo ;Jeanson, Raphaël ;Deneubourg, Jean-Louis ;Sibbald, Angela
Référence Proceedings - Royal Society. Biological sciences, 277, 1684, page (1093-1099)
Publication Publié, 2010
Article révisé par les pairs
Résumé : The mechanisms by which group-living animals collectively exploit resources, and the role of individuals in group decisions, are central issues for understanding animal distribution patterns. We investigated the extent to which boldness and shyness affect the distribution of social herbivores across vegetation patches, using sheep as a model species. Using an experimental and a theoretical approach, we show that collective choices emerge through the nonlinear dynamics of interactions between individuals, at both short and long distances. Within a range of parameter values derived from the observation of homogeneous groups of each behavioural type, we propose a simple mechanism whereby the same interaction rules can result in different patterns of distribution across patches for bold and shy individuals. We present a mathematical model based on behavioural rules derived from experiments, in which crowding and conspecific attraction affect the probability of entering or leaving patches. Variation in the strength of social attraction is sufficient to account for differences in spatial distribution across patches. The model predicts that resource fragmentation more strongly affects the distribution patterns of shy groups, and suggests that the presence of both bold and shy individuals within groups would result in more flexible behaviour at the population level. © 2009 The Royal Society.