par Bodart, Jonathan
;Verlant-Chenet, Jonathan
;Bourdoux, André
;Dricot, Jean-Michel
;De Doncker, Philippe
;Lampe, Lutz;Horlin, François ![](/vufind/images/ULB/publications_list.png)
Référence (30-31 May, 2013: Leuven, Belgium), Proc. of the 34th WIC Symposium on Information Theory in the Benelux and the 3rd Joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, WIC
Publication Publié, 2013-05
![](/vufind/images/ULB/publications_list.png)
![](/vufind/images/ULB/publications_list.png)
![](/vufind/images/ULB/publications_list.png)
![](/vufind/images/ULB/publications_list.png)
![](/vufind/images/ULB/publications_list.png)
![](/vufind/images/ULB/publications_list.png)
Référence (30-31 May, 2013: Leuven, Belgium), Proc. of the 34th WIC Symposium on Information Theory in the Benelux and the 3rd Joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, WIC
Publication Publié, 2013-05
Publication dans des actes
Résumé : | Cognitive radios are a new technology introduced to resolve the spectrum scarcity problemby superimposing new services in the already allocated bands under a non-interference constraint.It has been recently demonstrated that the challenging implementation of the signal detectors canbe facilitated by using the theory of compressive sampling. In this paper, we consider a distributednetwork of secondary nodes that cooperate to detect the primary signals. Each secondary nodesamples the signal periodically at a rate much smaller than the Nyquist rate. The delays inherentto the propagation channel are used to implement a periodic non-uniform sampling detector whenthe secondary nodes combine their observations. We demonstrate that the proposed detector canefficiently detect the primary user signal, even under fading channels. |