par Bonheure, Denis ;Sanchez, Luís;Tarallo, Massimo;Terracini, Susanna
Référence Calculus of variations and partial differential equations, 17, 4, page (341-356)
Publication Publié, 2003
Référence Calculus of variations and partial differential equations, 17, 4, page (341-356)
Publication Publié, 2003
Article révisé par les pairs
Résumé : | Assuming that f is a potential having three minima at the same level of energy, we study for the conservative equation uiv - g(u)u″ - 1/2g′(u)u′2 + f′(u) = 0, (1) the existence of a heteroclinic connection between the extremal equilibria. Our method consists in minimizing the functional ∫-∞ +∞[1/2[(u″2) + g(u)u′2] + f(u)] dx whose Euler-Lagrange equation is given by (1), in a suitable space of functions. |