par Dauphin, Alexandre ;Mueller, Markus;Martin Delgado, Miguel Angel
Référence Physical review. A, Atomic, Molecular, and Optical Physics, 86, 5, page (053618)
Publication Publié, 2012-11-20
Article révisé par les pairs
Résumé : In this work we consider a system of spinless fermions with nearest and next-to-nearest neighbor repulsive Hubbard interactions on a honeycomb lattice, and propose and analyze a realistic scheme for analog quantum simulation of this model with cold atoms in a two-dimensional hexagonal optical lattice. To this end, we first derive the zero-temperature phase diagram of the interacting model within a mean-field theory treatment. We show that besides a semimetallic and a charge-density-wave ordered phase, the system exhibits a quantum anomalous Hall phase, which is generated dynamically, i.e., purely as a result of the repulsive fermionic interactions and in the absence of any external gauge fields. We establish the topological nature of this dynamically created Mott-insulating phase by the numerical calculation of a Chern number, and we study the possibility of coexistence of this phase with any of the other phases characterized by local order parameters. Based on the knowledge of the mean-field phase diagram, we then discuss in detail how the interacting Hamiltonian can be engineered effectively by state-of-the-art experimental techniques for laser dressing of cold fermionic ground-state atoms with electronically excited Rydberg states that exhibit strong dipolar interactions.