Résumé : Human Vgamma9/Vdelta2 T cells comprise a small population of peripheral blood T cells that in many infectious diseases respond to the microbial metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), expanding to up to 50% of CD3(+) cells. This "transitional response," occurring temporally between the rapid innate and slower adaptive response, is widely viewed as proinflammatory and/or cytolytic. However, increasing evidence that different cytokines drive widely different effector functions in alphabeta T cells provoked us to apply cDNA microarrays to explore the potential pleiotropy of HMB-PP-activated Vgamma9/Vdelta2 T cells. The data and accompanying validations show that the related cytokines, IL-2, IL-4, or IL-21, each drive proliferation and comparable CD69 up-regulation but induce distinct effector responses that differ from prototypic alphabeta T cell responses. For example, the Th1-like response to IL-2 also includes expression of IL-5 and IL-13 that conversely are not induced by IL-4. The data identify specific molecules that may mediate gammadelta T cell effects. Thus, IL-21 induces a lymphoid-homing phenotype and high, unexpected expression of the follicular B cell-attracting chemokine CXCL13/BCA-1, suggesting a novel follicular B-helper-like T cell that may play a hitherto underappreciated role in humoral immunity early in infection. Such broad plasticity emphasizes the capacity of gammadelta T cells to influence the nature of the immune response to different challenges and has implications for the ongoing clinical application of cytokines together with Vgamma9/Vdelta2 TCR agonists.