Article révisé par les pairs
Résumé : Fractal analysis is widely used in many scientific fields, including the study of vascularization. It is a convenient method that defines the complexity of natural structures. The chorioallantoic membrane of the chick embryo is a standard experimental model for the study of vasculogenesis and angiogenesis. The aim of this investigation was to demonstrate that fractal geometry is more appropriate than any other method to describe and analyse the evolution of a vascular network, i.e. the extraembryonar vascular network of the chick embryo. We used an original methodology to evaluate the complexity of this network in the first stages of embryo development (day 3 until 6). We demonstrated an increase of fractal dimension, indicating an increasing complexity of the vascular tree, until an asymptotical value of about 1.70 at day 4. The fractal approach is more accurate than other usual semi-quantitative or quantitative methods evaluating the complexity of a growing vascular tree.