par Chantraine, Baptiste
Référence Bulletin of the London Mathematical Society, 44, 5, page (981-987)
Publication Publié, 2012-10
Référence Bulletin of the London Mathematical Society, 44, 5, page (981-987)
Publication Publié, 2012-10
Article révisé par les pairs
Résumé : | In this note we define the notion of collarable slices of Lagrangian submanifolds. Those are slices of Lagrangian submanifolds which can be isotoped through Lagrangian submanifolds to a cylinder over a Legendrian embedding near a contact hypersurface. Such a notion arises naturally when studying intersections of Lagrangian submanifolds with contact hypersurfaces. We then give two explicit examples of Lagrangian disks in $mathbb{C}^2$ transverse to $S^3$ whose slices are non-collarable. |