Article révisé par les pairs
Résumé : Previous studies have shown that in normal humans the change in airway opening pressure (DeltaPao) produced by all the parasternal and external intercostal muscles during a maximal contraction is approximately -18 cmH(2)O. This value is substantially less negative than DeltaPao values recorded during maximal static inspiratory efforts in subjects with complete diaphragmatic paralysis. In the present study, therefore, the respiratory effects of the two prominent inspiratory muscles of the neck, the sternomastoids and the scalenes, were evaluated by application of the Maxwell reciprocity theorem. Seven healthy subjects were placed in a computed tomographic scanner to determine the fractional changes in muscle length during inflation from functional residual capacity to total lung capacity and the masses of the muscles. Inflation induced greater shortening of the scalenes than the sternomastoids in every subject. The inspiratory mechanical advantage of the scalenes thus averaged (mean +/- SE) 3.4 +/- 0.4%/l, whereas that of the sternomastoids was 2.0 +/- 0.3%/l (P < 0.001). However, sternomastoid muscle mass was much larger than scalene muscle mass. As a result, DeltaPao generated by a maximal contraction of either muscle would be 3-4 cmH(2)O, which is about the same as DeltaPao generated by the parasternal intercostals in all interspaces.