Article révisé par les pairs
Résumé : Plants strongly impact the continental silicon cycle by taking up Si and precipitating opal phytoliths which are recycled into the soil. Studying Ge incorporation, a chemical analog of Si, relative to Si may provide a useful tracer of Si pathways. However, Ge uptake and transport through plants and the impact on Ge/Si of phytoliths remain poorly understood. Here, we report Ge uptake and accumulation and Ge/Si fractionation in all plant parts and solutions from: (1) hydroponie banana, (2) in situ sampled banana, and (3) horsetails. We further combine these data with δ29Si from banana plants. Our data reconcile opposite conclusions drawn from previous studies on Ge uptake and pathways. No discrimination of Ge occurred at the root-solution interface. Banana and horsetails were shown to accumulate Ge in roots: a previous study provided evidence of low Ge/Si ratios in root phytoliths which contrasts with high bulk Ge/Si ratios in roots we report here. This suggests that Ge is organically trapped in roots. Consequently, shoots display lower Ge/Si ratios, without fractionation between shoot parts since Ge would follow transpiration stream as silicon, and is not discriminated between shoot parts. This contrasts with the two-step discrimination against heavy Si isotopes, at the root-solution interface, and then within the shoots. The soil composition (clays versus Fe oxides) has a leading role on the Ge/Si signatures of plants which may in turn impact on the Si and Ge fluxes to the global ocean. Copyright 2009 by the American Geophysical Union.