Article révisé par les pairs
Résumé : In addition to available country or site-specific life cycle studies on Jatropha biodiesel we present a generic, location-independent life cycle assessment and provide a general but in-depth analysis of the environmental performance of Jatropha biodiesel for transportation. Additionally, we assess the influence of changes in byproduct use and production chain. In our assessments, we went beyond the impact on energy requirement and global warming by including impacts on ozone layer and terrestrial acidification and eutrophication. The basic Jatropha biodiesel system consumes eight times less nonrenewable energy than conventional diesel and reduces greenhouse gas emissions by 51%. This result coincides with the lower limit of the range of reduction percentages available in literature for this system and for other liquid biofuels. The impact on the ozone layer is also lower than that provoked by fossil diesel, although eutrophication and acidification increase eight times. This study investigates the general impact trends of the Jatropha system, although not considering land-use change. The results are useful as a benchmark against which other biodiesel systems can be evaluated, to calculate repayment times for land-use change induced carbon loss or as guideline with default values for assessing the environmental performance of specific variants of the system. © 2011 American Chemical Society.