Articles dans des revues avec comité de lecture (58)

  1. 24. Francfort, G. G., & Gloria, A. (2016). L'isotropie interdit la perte d'ellipticité forte par homogénéisation en élasticité linéaire. Comptes rendus. Mathématique, 354(11), 1139-1144. doi:10.1016/j.crma.2016.09.014
  2. 25. Armstrong, S., Gloria, A., & Kuusi, T. (2016). Bounded Correctors in Almost Periodic Homogenization. Archive for rational mechanics and analysis, 222(1), 393-426. doi:10.1007/s00205-016-1004-0
  3. 26. Duerinckx, M., & Gloria, A. (2016). Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth. Archive for rational mechanics and analysis, 221(3), 1511-1584. doi:10.1007/s00205-016-0992-0
  4. 27. Gloria, A., & Marahrens, D. (2016). Annealed estimates on the Green functions and uncertainty quantification. Annales de l'Institut Henri Poincaré. Analyse non linéaire, 33(5), 1153-1197. doi:10.1016/j.anihpc.2015.04.001
  5. 28. Duerinckx, M., & Gloria, A. (2016). Analyticity of Homogenized Coefficients Under Bernoulli Perturbations and the Clausius–Mossotti Formulas. Archive for rational mechanics and analysis, 220(1), 297-361. doi:10.1007/s00205-015-0933-3
  6. 29. Gloria, A., & Habibi, Z. (2016). Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation. Foundations of computational mathematics, 16(1), 217-296. doi:10.1007/s10208-015-9246-z
  7. 30. De Buhan, M., Gloria, A., Le Tallec, P., & Vidrascu, M. (2015). Reconstruction of a constitutive law for rubber from in silico experiments using Ogden's laws. International journal of solids and structures, 62, 158-173. doi:10.1016/j.ijsolstr.2015.02.026
  8. 31. Gloria, A., Neukamm, S., & Otto, F. (2015). Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Inventiones Mathematicae, 199(2), 455-515. doi:10.1007/s00222-014-0518-z
  9. 32. Gloria, A. (2014). When are increment-stationary random point sets stationary? Electronic communications in probability, 19. doi:10.1214/ECP.v19-3288
  10. 33. Egloffe, A.-C., Gloria, A., Mourrat, J.-C., & Nguyen, T. N. (2014). Random walk in random environment, corrector equation, and homogenized coefficients: from theory to numerics, back and forth. IMA journal of numerical analysis, 35(2), 499-545. doi:10.1093/imanum/dru010
  11. 34. Gloria, A., Neukamm, S., & Otto, F. (2014). An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. Modélisation mathématique et analyse numérique, 48(2), 325-346. doi:10.1051/m2an/2013110
  12. 35. Gloria, A., & Penrose, M. D. (2013). Random parking, Euclidean functionals, and rubber elasticity. Communications in Mathematical Physics, 321(1), 1-31.

  13. << Précédent 1 2 3 4 5 6 Suivant >>