Articles dans des revues avec comité de lecture (58)
12.
Duerinckx, M., & Gloria, A. (2020). Corrector Equations in Fluid Mechanics: Effective Viscosity of Colloidal Suspensions. Archive for rational mechanics and analysis. doi:10.1007/s00205-020-01589-1
13.
Duerinckx, M., & Gloria, A. (2020). Multiscale functional inequalities in probability: Constructive approach. Annales Henri Lebesgue, 3, 825-872. doi:10.5802/ahl.47
14.
Cicalese, M., Gloria, A., & Ruf, M. (2020). From Statistical Polymer Physics to Nonlinear Elasticity. Archive for rational mechanics and analysis. doi:10.1007/s00205-019-01487-1
15.
Gloria, A., Neukamm, S., & Otto, F. (2020). A Regularity Theory for Random Elliptic Operators. Milan journal of mathematics. doi:10.1007/s00032-020-00309-4
16.
Duerinckx, M., & Gloria, A. (2020). Multiscale functional inequalities in probability: Concentration properties. Alea (Rio de Janeiro), 17(1), 133-157. doi:10.30757/ALEA.v17-06
17.
Duerinckx, M., Gloria, A., & Otto, F. (2020). Robustness of the pathwise structure of fluctuations in stochastic homogenization. Probability theory and related fields, 178, 531-566. doi:10.1007/s00440-020-00983-w
18.
Duerinckx, M., Gloria, A., & Otto, F. (2020). The Structure of Fluctuations in Stochastic Homogenization. Communications in Mathematical Physics, 377, 259-306. doi:10.1007/s00220-020-03722-3
19.
Gloria, A., & Ruf, M. (2019). Loss of Strong Ellipticity Through Homogenization in 2D Linear Elasticity: A Phase Diagram. Archive for rational mechanics and analysis, 231(2), 845-886. doi:10.1007/s00205-018-1290-9
20.
Duerinckx, M., Gloria, A., & Lemm, M. (2019). A remark on a surprising result by Bourgain in homogenization. Communications in partial differential equations, 44(12), 1345-1357. doi:10.1080/03605302.2019.1638934
21.
Benoit, A., & Gloria, A. (2019). Long-time homogenization and asymptotic ballistic transport of classical waves. Annales Scientifiques de l'Ecole Normale Supérieure, 1(52), 703-759. doi:10.24033/asens.2395
22.
Gloria, A., & Otto, F. (2017). Quantitative results on the corrector equation in stochastic homogenization. Journal of the European Mathematical Society, 19(11), 3489-3548. doi:10.4171/JEMS/745
23.
Gloria, A., & Nolen, J. (2016). A Quantitative Central Limit Theorem for the Effective Conductance on the Discrete Torus. Communications on pure and applied mathematics, 69(12), 2304-2348. doi:10.1002/cpa.21614