Articles dans des revues avec comité de lecture (105)

  1. 11. Englebert, N., Goldman, N., Erkintalo, M., Mostaan, N., Gorza, S.-P., Leo, F., & Fatome, J. (2023). Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension. Nature Physics. doi:10.1038/s41567-023-02005-7
  2. 12. Yu, M., Liu, Y., Yang, P., Gong, M., Cao, Q., Zhang, S., Liu, H., Heyl, M., Ozawa, T., Goldman, N., & Cai, J. (2022). Quantum Fisher information measurement and verification of the quantum Cramér–Rao bound in a solid-state qubit. npj Quantum Information, 8(1), 56. doi:10.1038/s41534-022-00547-x
  3. 13. Jamotte, M., Goldman, N., & Di Liberto, M. (2022). Strain and pseudo-magnetic fields in optical lattices from density-assisted tunneling. Communications Physics, 5(1). doi:10.1038/s42005-022-00802-9
  4. 14. Mostaan, N., Grusdt, F., & Goldman, N. (2022). Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures. Nature communications, 13, 5997.
  5. 15. Chen, M., Li, C., Palumbo, G., Zhu, Y. Q., Goldman, N., & Cappellaro, P. (2022). A synthetic monopole source of Kalb-Ramond field in diamond. Science, 375(6584), 1017-1020. doi:10.1126/science.abe6437
  6. 16. Jamotte, M., Goldman, N., & Di Liberto, M. (2022). Strain and pseudo-magnetic fields in optical lattices from density-assisted tunneling, Communications in Physics, 5, 30.
  7. 17. Mera, B., Zhang, A., & Goldman, N. (2022). Relating the topology of Dirac Hamiltonians to quantum geometry: When the quantum metric dictates Chern numbers and winding numbers. SciPost Physics, 12, 018.
  8. 18. Yu, M., Li, D., Wang, J., Chu, Y., Yang, P., Gong, M., Goldman, N., & Cai, J. (2021). Experimental estimation of the quantum Fisher information from randomized measurements. Physical Review Research, 3(4), 043122. doi:10.1103/PhysRevResearch.3.043122
  9. 19. Pimenov, D., Camacho-Guardian, A., Goldman, N., Massignan, P., Bruun, G. G., & Goldstein, M. (2021). Topological transport of mobile impurities. Physical Review B, 103(24), 245106. doi:10.1103/PhysRevB.103.245106
  10. 20. Łącki, M., Zakrzewski, J., & Goldman, N. (2021). A dark state of Chern bands: Designing flat bands with higher Chern number. SciPost Physics, 10(5), 112. doi:10.21468/SCIPOSTPHYS.10.5.110
  11. 21. Goldman, N., & Yefsah, T. (2021). The Weyl side of ultracold matter. Science (New York, N.Y.), 372(6539), 234-235. doi:10.1126/science.abg0892
  12. 22. Barbiero, L., Chomaz, L., & Goldman, N. (2020). Bose-Hubbard physics in synthetic dimensions from interaction Trotterization. Physical Review Research, 2, 043340.

  13. << Précédent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Suivant >>