Parties d'ouvrages collectifs (1)

  1. 1. Cannella, D. (2018). Light-Induced Electron Transfer Protocol for Enzymatic Oxidation of Polysaccharides. In Cellulases Lübeck Mette. New York, NY: Humana Press.(Springer Protocols, 1796).
  2.   Articles dans des revues avec comité de lecture (35)

  3. 1. Welsh, L. L., Avrova, A. A., Besser, K., Kirkbride, T., Botelho Machado, C., Hatton, N. N., Gomez, L. L., Fascione, M. M., Cartwright, J., Boevink, P. P., Denby, K., Cannella, D., McQueen-Mason, S. S., Whisson, S. S., & Sabbadin, F. (2025). Oomycetes manipulate plant innate immunity through galacturonide oxidases. Nature communications, 16(1), 9093. doi:10.1038/s41467-025-64189-1
  4. 2. Falcone, E., Tomey, R., Turley, E., Cannella, D., Robinson, D., & Ciano, L. (2025). De Novo Designed β-Hairpin Peptides Mimicking the Copper-Binding Histidine Brace Motif of Lytic Polysaccharide Monooxygenases. Angewandte Chemie. doi:10.1002/anie.202513990
  5. 3. Meunier, L., Costa, R., Keller-Costa, T., Cannella, D., Dechamps, E., & George, I. (2024). Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiology spectrum, 12(11), e00886-24. doi:10.1128/spectrum.00886-24
  6. 4. Decembrino, D., & Cannella, D. (2024). The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnology advances, 72, 108321. doi:10.1016/j.biotechadv.2024.108321
  7. 5. Salzano, F., Aulitto, M., Fiorentino, G., Cannella, D., Peeters, E., & Limauro, D. (2024). A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. International journal of biological macromolecules, 264, 130550. doi:10.1016/j.ijbiomac.2024.130550
  8. 6. Brienza, F., Cannella, D., Montesdeoca, D., Cybulska, I., & Debecker, D. D. (2023). A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals. RSC Sustainability, 2(1), 37-90. doi:10.1039/d3su00140g
  9. 7. Vieira Monclaro, A., Gonçalves, T. A., Magri, S., Ovaert, J., Decembrino, D., Debecker, D. D., Kadowaki, M. A., Doneux, T., De Leener, G., Zarattini, M., Luhmer, M., & Cannella, D. (2023). Melanin, A Fungal Photosensitizer for Cellulose Oxidizing AA9-LPMO Enzymes. ChemCatChem, 15(20), e202300602. doi:10.1002/cctc.202300602
  10. 8. Cannella, D., Weiss, N., Hsieh, C., Magri, S., Zarattini, M., Kuska, J., Karuna, N., Thygesen, L. G., Polikarpov, I., Felby, C., Jeoh, T., & Jørgensen, H. (2023). LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter. Cellulose, 30(10), 6259-6272. doi:10.1007/s10570-023-05271-z
  11. 9. Sun, P., Huang, Z., Banerjee, S., Kadowaki, M. A. S., Veersma, R. R., Magri, S., Hilgers, R., Muderspach, S. J., Laurent, C., Ludwig, R., Cannella, D., Lo Leggio, L., Van Berkel, W. W., & Kabel, M. M. (2023). AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from Myceliophthora thermophila. ACS Catalysis, 13(7), 4454-4467. doi:10.1021/acscatal.3c00874
  12. 10. Velasco, J., Sepulchro, A. G. V., Higasi, P. M. R., Pellegrini, V. D. O. A. V., Cannella, D., Oliveira, L. C. D. L., Polikarpov, I., & Segato, F. (2022). Light Boosts the Activity of Novel LPMO from Aspergillus fumigatus Leading to Oxidative Cleavage of Cellulose and Hemicellulose. ACS Sustainable Chemistry and Engineering, 10(50), 16969-16984. doi:10.1021/acssuschemeng.2c06281
  13. 11. Zarattini, M., Choaibi, A., Magri, S., Hermans, C., & Cannella, D. (2022). The oxidized cellooligosaccharides confer thermotolerance in Arabidopsis by priming ethylene via heat shock factor A2. Physiologia Plantarum, 174(4), e13737. doi:10.1111/ppl.13737

  14. << Précédent 1 2 3 4 5 Suivant >>