Parties d'ouvrages collectifs (1)

  1. 1. Cannella, D. (2018). Light-Induced Electron Transfer Protocol for Enzymatic Oxidation of Polysaccharides. In Cellulases Lübeck Mette. New York, NY: Humana Press.(Springer Protocols, 1796).
  2.   Articles dans des revues avec comité de lecture (37)

  3. 1. Meunier, L., Keller-Costa, T., Cannella, D., Gonçalves, J. M. J., Dechamps, E., Marques, M., Costa, R., & George, I. (2025). An artificial selection procedure enriches for known and suspected chitin degraders from the prokaryotic rare biosphere of multiple marine biotopes. BMC Microbiology, 25(1), 778. doi:10.1186/s12866-025-04218-7
  4. 2. Falcone, E., Tomey, R., Turley, E., Cannella, D., Robinson, D., & Ciano, L. (2025). De Novo Designed β-Hairpin Peptides Mimicking the Copper-Binding Histidine Brace Motif of Lytic Polysaccharide Monooxygenases. Angewandte Chemie. doi:10.1002/anie.202513990
  5. 3. Welsh, L. L., Avrova, A. A., Besser, K., Kirkbride, T., Botelho Machado, C., Hatton, N. N., Gomez, L. L., Fascione, M. M., Cartwright, J., Boevink, P. P., Denby, K., Cannella, D., McQueen-Mason, S. S., Whisson, S. S., & Sabbadin, F. (2025). Oomycetes manipulate plant innate immunity through galacturonide oxidases. Nature communications, 16(1), 9093. doi:10.1038/s41467-025-64189-1
  6. 4. Salini, A., Gonnelli, P. M., Padoan, C., Helali, Y., Waeytens, J., Fusco, S., & Cannella, D. (2025). Repurposing Commercial Hydrolytic and Oxidative Enzymes toward Synergistic PLA Depolymerization. ACS Sustainable Chemistry and Engineering, 13(48), 20705-20716. doi:10.1021/acssuschemeng.5c06901
  7. 5. Meunier, L., Costa, R., Keller-Costa, T., Cannella, D., Dechamps, E., & George, I. (2024). Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiology spectrum, 12(11), e00886-24. doi:10.1128/spectrum.00886-24
  8. 6. Decembrino, D., & Cannella, D. (2024). The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnology advances, 72, 108321. doi:10.1016/j.biotechadv.2024.108321
  9. 7. Salzano, F., Aulitto, M., Fiorentino, G., Cannella, D., Peeters, E., & Limauro, D. (2024). A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. International journal of biological macromolecules, 264, 130550. doi:10.1016/j.ijbiomac.2024.130550
  10. 8. Brienza, F., Cannella, D., Montesdeoca, D., Cybulska, I., & Debecker, D. D. (2023). A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals. RSC Sustainability, 2(1), 37-90. doi:10.1039/d3su00140g
  11. 9. Vieira Monclaro, A., Gonçalves, T. A., Magri, S., Ovaert, J., Decembrino, D., Debecker, D. D., Kadowaki, M. A., Doneux, T., De Leener, G., Zarattini, M., Luhmer, M., & Cannella, D. (2023). Melanin, A Fungal Photosensitizer for Cellulose Oxidizing AA9-LPMO Enzymes. ChemCatChem, 15(20), e202300602. doi:10.1002/cctc.202300602
  12. 10. Cannella, D., Weiss, N., Hsieh, C., Magri, S., Zarattini, M., Kuska, J., Karuna, N., Thygesen, L. G., Polikarpov, I., Felby, C., Jeoh, T., & Jørgensen, H. (2023). LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter. Cellulose, 30(10), 6259-6272. doi:10.1007/s10570-023-05271-z
  13. 11. Sun, P., Huang, Z., Banerjee, S., Kadowaki, M. A. S., Veersma, R. R., Magri, S., Hilgers, R., Muderspach, S. J., Laurent, C., Ludwig, R., Cannella, D., Lo Leggio, L., Van Berkel, W. W., & Kabel, M. M. (2023). AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from Myceliophthora thermophila. ACS Catalysis, 13(7), 4454-4467. doi:10.1021/acscatal.3c00874

  14. << Précédent 1 2 3 4 5 Suivant >>