Parties d'ouvrages collectifs (2)

  1. 1. Zdybal, K., D'Alessio, G., Aversano, G., Malik, M. R., Coussement, A., Sutherland, J. C., & Parente, A. (2023). Advancing Reacting Flow Simulations with Data-Driven Models. In Advancing Reacting Flow Simulations with Data-Driven Models (1 ed., pp. 304 - 329). Cambridge University Press. doi:https://doi.org/10.1017/9781108896214.022
  2. 2. Zdybal, K., Malik, M. R., Coussement, A., Sutherland, J. C., & Parente, A. (2023). Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches. In N. Swaminathan & A. Parente (Eds.), Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches. Cham: Springer. doi:https://doi.org/10.1007/978-3-031-16248-0_9
  3.   Articles dans des revues avec comité de lecture (55)

  4. 1. Procacci, A., Iavarone, S., Coussement, A., & Parente, A. (2025). Stochastic reduced-order modeling for the forecast of noisy dynamical systems. Proceedings of the Combustion Institute, 41, 105981.
  5. 2. Cafiero, M., Mustafa Kamal, M., Sharma, S., Nguyen, P. D., Nowakowska, M., Coussement, A., & Parente, A. (2025). Combustion characterization of benzene-doped, hydrogen-rich coke oven gas surrogate mixtures: H2/CH4/CO/N2/CO2. Fuel processing technology, 276, 108241. doi:10.1016/j.fuproc.2025.108241
  6. 3. Hafeez, M. A., Procacci, A., Coussement, A., & Parente, A. (2025). Constrained reduced-order modeling of reacting flows using bounded Gaussian process likelihoods: application to a furnace operating under MILD conditions. Proceedings of the Combustion Institute, 41, 105846. doi:10.1016/j.proci.2025.105846
  7. 4. Biswal, P., Avdijaj, J., Parente, A., & Coussement, A. (2025). Physics informed neural networks to solve radiative transfer equation in absorbing-scattering media. Journal of quantitative spectroscopy & radiative transfer, 344, 109509. doi:10.1016/j.jqsrt.2025.109509
  8. 5. Hafeez, M. A., Procacci, A., Coussement, A., & Parente, A. (2025). Constrained reduced-order modeling using bounded Gaussian processes for physically consistent reacting flow predictions. Energy and AI, 21, 100554. doi:10.1016/j.egyai.2025.100554
  9. 6. Piscopo, A., Giuntini, L., Novelli, C., De Paepe, W., Coussement, A., & Parente, A. (2025). Burning ammonia–hydrogen mixtures in a staged combustor with high efficiency and low pollutant emissions. International journal of hydrogen energy, 118, 343-355. doi:10.1016/j.ijhydene.2025.03.099
  10. 7. Biswal, P., Avdijaj, J., Parente, A., & Coussement, A. (2024). Solving the Radiation Transfer Equation in Participating Media Using Physics Informed Neural Networks. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. doi:10.11159/htff24.269
  11. 8. Procacci, A., Amaduzzi, R., Coussement, A., & Parente, A. (2024). Computed tomography of chemiluminescence using a data-driven sparse sensing framework. Applied thermal engineering, 255, 123918. doi:10.1016/j.applthermaleng.2024.123918
  12. 9. Biswal, P., Avdijaj, J., Parente, A., & Coussement, A. (2024). Radiation Transfer Equation in Participating Media: Solution Using Physics Informed Neural Networks. Journal of Fluid Flow, Heat and Mass Transfer, 11, 356-362. doi:10.11159/jffhmt.2024.035
  13. 10. Giuntini, L., Novelli, C., Mustafa Kamal, M., Cafiero, M., Galletti, C., Coussement, A., & Parente, A. (2024). Continuously-staged NH3 oxidation in a stagnation-point reverse-flow combustor for low NOx emissions. Proceedings of the Combustion Institute, 40(1-4), 105674. doi:10.1016/j.proci.2024.105674

  14. << Précédent 1 2 3 4 5 6 7 8 9 10 Suivant >>