Parties d'ouvrages collectifs (2)

  1. 1. Zdybal, K., D'Alessio, G., Aversano, G., Malik, M. R., Coussement, A., Sutherland, J. C., & Parente, A. (2023). Advancing Reacting Flow Simulations with Data-Driven Models. In Advancing Reacting Flow Simulations with Data-Driven Models (1 ed., pp. 304 - 329). Cambridge University Press. doi:https://doi.org/10.1017/9781108896214.022
  2. 2. Zdybal, K., Malik, M. R., Coussement, A., Sutherland, J. C., & Parente, A. (2023). Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches. In N. Swaminathan & A. Parente (Eds.), Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches. Cham: Springer. doi:https://doi.org/10.1007/978-3-031-16248-0_9
  3.   Articles dans des revues avec comité de lecture (48)

  4. 1. Procacci, A., Amaduzzi, R., Coussement, A., & Parente, A. (2024). Computed tomography of chemiluminescence using a data-driven sparse sensing framework. Applied thermal engineering, 255, 123918. doi:10.1016/j.applthermaleng.2024.123918
  5. 2. Procacci, A., Amaduzzi, R., Coussement, A., & Parente, A. (2024). Computed tomography of chemiluminescence using a data-driven sparse sensing framework. Applied thermal engineering, 255, 123918. doi:10.1016/j.applthermaleng.2024.123918
  6. 3. Giuntini, L., Novelli, C., Mustafa Kamal, M., Cafiero, M., Galletti, C., Coussement, A., & Parente, A. (2024). Continuously-staged NH3 oxidation in a stagnation-point reverse-flow combustor for low NOx emissions. Proceedings of the Combustion Institute, 40(1-4), 105674. doi:10.1016/j.proci.2024.105674
  7. 4. Hafeez, M. A., Procacci, A., Coussement, A., & Parente, A. (2024). Challenges and opportunities for the application of digital twins in hard-to-abate industries: a review. Resources, conservation and recycling, 209, 107796. doi:10.1016/j.resconrec.2024.107796
  8. 5. Lubrano Lavadera, M., Coussement, A., & Parente, A. (2024). Steam-assisted MILD-POX: A flexible process for the production of hydrogen. International journal of hydrogen energy, 73, 381-391. doi:10.1016/j.ijhydene.2024.06.018
  9. 6. Donato, L., Kamal, M. M., Procacci, A., Cafiero, M., Sharma, S., Galletti, C., Coussement, A., & Parente, A. (2024). Integrating data assimilation and sparse sensing for updating a digital twin of a semi-industrial furnace. Proceedings of the Combustion Institute, 40(1-4), 105284. doi:10.1016/j.proci.2024.105284
  10. 7. Lubrano Lavadera, M., Mustafa Kamal, M., Sharma, S., Donato, L., Galletti, C., Coussement, A., & Parente, A. (2024). A combined experimental, numerical, and data consistency approach for the characterization of temperature distribution in a MILD combustion furnace. Applied thermal engineering, 243, 122625. doi:10.1016/j.applthermaleng.2024.122625
  11. 8. Piscopo, A., Iavarone, S., Savarese, M., Riis, M., Crawford, B., Bessette, D., Orsino, S., Coussement, A., De Paepe, W., & Parente, A. (2024). Mixing time scale analysis of the Partially Stirred Reactor model for high-speed turbulent combustion of hydrogen in vitiated air. Acta astronautica. doi:10.1016/j.actaastro.2024.02.009
  12. 9. Jamshidiha, M., Kamal, M. M., Cafiero, M., Coussement, A., & Parente, A. (2024). Experimental and numerical characterization of hydrogen combustion in a reverse-flow micro gas turbine combustor. International journal of hydrogen energy, 55, 1299-1311. doi:10.1016/j.ijhydene.2023.11.243
  13. 10. Cafiero, M., Sharma, S., Mustafa Kamal, M., Coussement, A., & Parente, A. (2024). Effect of aromatic doping on the thermal and emissions characteristics of hydrogen-rich fuels in a semi-industrial scale furnace. Fuel, 358, 130075. doi:10.1016/j.fuel.2023.130075

  14. << Précédent 1 2 3 4 5 6 7 8 9 Suivant >>