Parties d'ouvrages collectifs (2)

  1. 1. Godet, S., Cadotte, E.-L., & Perlade, A. (2024). Cut Edge Behavior. In New Advanced High Strength Steels: Optimizing Properties (pp. 233-262). wiley.
  2. 2. Pirgazi, H., Petrov, R. R., Malet, L., Godet, S., & Kestens, L. (2021). Recent Developments in Orientation Contrast Microscopy. In Encyclopedia of Materials: Metals and Alloys (pp. 662-681). Elsevier. doi:10.1016/B978-0-12-819726-4.00135-6
  3.   Articles dans des revues avec comité de lecture (112)

  4. 1. Malet, L., & Godet, S. (2024). Revisiting the Crystallography of {225}γ Martensite: How EBSD Can Help to Solve Long-Standing Controversy. Crystals, 14(3), 287. doi:10.3390/cryst14030287
  5. 2. Dumas, O., Malet, L., Kwaśniak, P., Prima, F., & Godet, S. (2024). Design rules to develop solute lean α+β titanium alloys exhibiting high work-hardening by reorientation induced plasticity. Materials science & engineering. A, Structural materials: properties, microstructure and processing, 890, 145935. doi:10.1016/j.msea.2023.145935
  6. 3. Dumas, O., Malet, L., Kwaśniak, P., Prima, F., & Godet, S. (2023). Reorientation Induced Plasticity (RIP) in high-strength titanium alloys: An insight into the underlying mechanisms and resulting mechanical properties. Acta materialia, 246, 118679. doi:10.1016/j.actamat.2023.118679
  7. 4. Guzman, M. G., Dille, J., & Godet, S. (2021). Effect of pH and ammonia concentration on the shape and size of fluorapatite nanoparticles obtained by chemical reaction. Materials letters, 303, 130559. doi:10.1016/j.matlet.2021.130559
  8. 5. Guzman, M. G., Arcos, M., Dille, J., Rousse, C., Godet, S., & Malet, L. (2021). Effect of the Concentration and the Type of Dispersant on the Synthesis of Copper Oxide Nanoparticles and Their Potential Antimicrobial Applications. ACS Omega, 6(29), 18576-18590. doi:10.1021/acsomega.1c00818
  9. 6. Dumas, O., Malet, L., Hary, B., Prima, F., & Godet, S. (2020). Crystallography and reorientation mechanism upon deformation in the martensite of an α-α’ Ti-6Al-4V dual-phase microstructure exhibiting high work-hardening rate. Acta materialia, 205, 116530. doi:10.1016/j.actamat.2020.116530
  10. 7. Hachet, D., Gorsse, S., & Godet, S. (2020). Microstructure study of cold rolled Al0.32CoCrFeMnNi high-entropy alloy: interactions between recrystallization and precipitation. Materials science & engineering. A, Structural materials: properties, microstructure and processing, 140452. doi:10.1016/j.msea.2020.140452
  11. 8. De Formanoir De La Caze, C., Godet, S., et al. (2020). Fabrication additive de pièces en titane par fusion sélective de lit de poudre. Collection Sciences et techniques de l'ingénieur., BM7930.
  12. 9. Bidegaray, A. I., Nys, K., Silvestri, A., Cosyns, P., Meulebroeck, W., Terryn, H., Godet, S., & Ceglia, A. (2020). 50 shades of colour: how thickness, iron redox and manganese/antimony contents influence perceived and intrinsic colour in Roman glass. Archaeological and Anthropological Sciences, 12(6), 109. doi:10.1007/s12520-020-01050-0
  13. 10. Peyrouzet, F., Hachet, D., Soulas, R., Navone, C., Godet, S., & Gorsse, S. (2020). Correction to: Selective Laser Melting of Al0.3CoCrFeNi High Entropy Alloy: Printability, Microstructure, and Mechanical Properties. JOM. doi:10.1007/s11837-020-04149-w

  14. << Précédent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Suivant >>