Résumé : Adriamycin plays a prominent role in the treatment of leukemia and solid tumors in man. The mode of interaction of adriamycin with its nuclear target, responsible for its therapeutic effect, is known [Berman, H. M., & Young, P.R. (1981) Annu. Rev. Biophys. Bioeng. 10, 87-114]. The planar anthracycline moiety of adriamycin intercalates between the base pairs whereas the sugar moiety fits into the DNA large groove. However, the cardiotoxicity of adriamycin places a limit on the total dose that may be given [Minow, R. A., Banjamin, R.S., & Gottlieb, J. A. (1975) Cancer Chemother. Rep. 6, 195-202]. Much evidence suggests that the mitochondrial membrane could be the target responsible for adriamycin cardiotoxicity. The formation of a very stable complex between adriamycin and cardiolipin, a phospholipid specific to the inner mitochondrial membrane, has been shown to inhibit several mitochondrial membrane enzymes whose activities depend on the presence of cardiolipin. Using attenuated total reflection infrared spectroscopy, we demonstrate here that, in the adriamycin-cardiolipin complex, both cardiolipin and adriamycin structures are modified as compared with the pure substances. Dichroism values indicate a slight reorientation of the cardiolipin molecule toward a normal to the plane of the bilayer whereas adriamycin, which shows no ordering in a pure phase, is highly ordered in the complex, the anthracycline moiety titled at about 40 degrees with respect to the normal to the plane of the bilayer. The partial disappearance of NH3+ characteristic bands indicates the involvement of the positively charged amino group of adriamycin in the complex formation.