Résumé : Insulin release and beta-cell membrane potentials in response to glucose at 37 and 27 degrees C have been measured simultaneously in single, micro-dissected, perifused islets of Langerhans from normal mice. Insulin release and 45Ca outflow in response to glucose at 37 and 27 degrees C have been measured simultaneously from perfused islets isolated by collagenase digestion from normal rats. The effect of cooling on beta-cell membrane potassium permeability was assessed by changes in measured membrane potential and input resistance (in the mouse) and by changes in 86Rb outflow (in the rat). Resting and active beta-cell membrane parameters (i.e. membrane potential, spike frequency, input resistance, 45Ca outflow and 86Rb outflow), in both mouse and rat islets, were affected only slightly by cooling to 27 degrees C, with temperature coefficients of 2 or lower. At 27 degrees C glucose-stimulated insulin release was inhibited completely in mouse islets and almost completely in rat islets. The temperature coefficients in both preparations were greater than 5. It is concluded that beta-cell electrical activity and changes in membrane permeability induced by glucose are not consequences of insulin release.