par Epping, E. H. G.;Schoemann, Véronique ;de Heij, H.
Référence Estuarine, coastal and shelf science, 47, 6, page (753-767)
Publication Publié, 1998
Article révisé par les pairs
Résumé : The effect of benthic oxygenic photosynthesis on sediment-water fluxes of manganese and iron was studied for an intertidal sediment. Undisturbed sediments were incubated at an incident surface irradiance of 250 μE m−2 s−1at 26 °C. Oxygenic photosynthesis was selectively inhibited by adding [3-(3,4-dichloro)-1,1-dimethyl-urea] (DCMU). Benthic fluxes were determined experimentally from the change in manganese and iron concentrations in the overlying water, and were predicted from the pore water concentration gradients at the sediment-water interface assuming molecular diffusion as the transport mechanism. The experimental fluxes of manganese and iron in DCMU-treated cores amounted to −0·84 and −0·59 mmol m−2day−1, respectively, and were directed from the sediment towards the overlying water. In the control cores, showing high rates of benthic oxygenic photosynthesis, the fluxes of manganese and iron were directed towards the sediment, 0·06 and 0·01 mmol m−2day−1, respectively. Mass balances for the 0·1–0·14 cm thick oxic zone, calculated from the experimental fluxes and the predicted fluxes, suggest a minimum areal reoxidation of 0·6 mmol m−2day−1for manganese and of 0·48 mmol m−2day−1for iron in cores showing benthic photosynthesis. The estimated turnover times for dissolved Mn2+and dissolved Fe2+in the oxic surface layer during benthic photosynthesis were 0·8 and 0·25 h, respectively. Sediment oxygen microprofiles and the sediment pH profiles suggest that chemical precipitation and reoxidation dominates the retention of manganese and iron during benthic oxygenic photosynthesis in shallow intertidal sediments.