par Sourie, Aurélien ;Chamel, Nicolas ;Novak, Jérôme;Oertel, Micaela
Référence Monthly notices of the Royal Astronomical Society, 464, 4, page (4641-4657)
Publication Publié, 2016-10-12
Article révisé par les pairs
Résumé : In this paper, we study in detail the role of general relativity on the global dynamics of giant pulsar glitches as exemplified by Vela. For this purpose, we carry out numerical simulations of the spin up triggered by the sudden unpinning of superfluid vortices. In particular, we compute the exchange of angular momentum between the core neutron superfluid and the rest of the star within a two-fluid model including both (non-dissipative) entrainment effects and (dissipative) mutual friction forces. Our simulations are based on a quasi-stationary approach using realistic equations of state (EoSs). We show that the evolution of the angular velocities of both fluids can be accurately described by an exponential law. The associated characteristic rise time τr, which can be precisely computed from stationary configurations only, has a form similar to that obtained in the Newtonian limit. However, general relativity changes the structure of the star and leads to additional couplings between the fluids due to frame-dragging effects. As a consequence, general relativity can have a large impact on the actual value of τr: the errors incurred by using Newtonian gravity are thus found to be as large as ∼40 per cent for the models considered. Values of the rise time are calculated for Vela and compared with current observational limits. Finally, we study the amount of gravitational waves emitted during a glitch. Simple expressions are obtained for the corresponding characteristic amplitudes and frequencies. The detectability of glitches through gravitational wave observatories is briefly discussed.